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LIQUID CRYSTALS, 1993, VOL. 14, No. 4, 1189-1198 

Computer simulations of nematic droplets 

by AXEL KILIAN 
Institut fur Theoretische Physik, Technische Universitat Berlin, 

D-1000 Berlin 12, Germany 

Nematic droplets are intimately connected with disclinations, because in 
nematic droplets, point and line-shaped defects, as well as surface defects, are not 
generated at random, but inevitably by topological constraints. Thus, droplets 
provide a good means for investigating nematic defects. There is a growing interest 
in both topics due to the applications in polymer dispersed liquid crystal devices 
[l-31, but also in classical display modelling, where nematic defects are to be 
avoided. Various types of droplets are investigated theoretically with the aid of a 
previously developed numerical algorithm [4,5], which is based on a dynamic 
equation for the alignment tensor u,,”. The rotational diffusion, the influence of an 
orienting external field, and the Frank elasticity (in the one-coefficient approxim- 
ation) are taken into account, but flow processes are neglected. For the application 
to nematic droplets, a new type of boundary conditions had to be used, which I have 
called ‘true planar anchoring’. I simulate the relaxation of the director field of 
nematic droplets from the isotropic state and vice versa for various types of 
anchoring and cavity shapes. Contrast pictures, as if viewed under crossed Nicols, 
are computed and compared to experiment. The results obtained elucidate the 
nature of the surface disclinations of strength one (boojums). In particular, it is 
found that their occurrence can be understood as a consequence of the planar 
anchoring, without any further assumptions. Moreover, a phase transition-like 
transformation of the director configuration is predicted which is temperature 
controlled and occurs, as the blue phases do, close to the nematic-isotropic 
transition temperature T,. 

1. Introduction 
This paper proceeds as follows: in Q 2, some basic facts about nematic droplets are 

reviewed. In Q 3, the basic equations for the dynamics of the nematic alignment tensor 
are introduced, and two numerical algorithms with different degrees of specialization 
are derived: the simpler one is formulated in terms of the nematic director, whereas the 
more sophisticated one contains the Landau-De Gennes potential and can therefore 
simulate the nematic-isotropic transition. Both methods are capable of handling 
nematic defects (disclinations). In $4, which is the main part of this paper, computer 
simulations of nematic droplets are presented and discussed. The last section is devoted 
to the conclusions and acknowledgments. 

2. Nematic droplets reviewed 
Nematic droplets may be characterized by a number of features, for example, the 

droplet size, the cavity shape, the type of surface alignment induced by the respective 
interfacial material, the material constants f K , ,  K , ,  K , ,  yl), the sign of the dielectric 
anisotropy Ae, to name some of them. They all contribute to the complex behaviour 
observed in experiments. Since this is a theoretical paper, we will focus on the director 
configuration, which is not directly measurable but governs the electro-optical 
response and  the phase contrast. 
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1190 A. Kilian 

As a first approximation, Doane et al. [l] classify the droplets by their surface 
alignment, which may be either planar, or homeotropic. This leads to four basic types of 
director fields within the droplets: the planar droplets usually exhibit a bipolar 
alignment, that is, a strongly aligned director field with two surface disclinations of 
strength 1 (boojums) at the antipodal points of the bipolar axis (see figure 1 (a)). If, 
however, the ratio of the bend to splay constants, K33/K ,  , is less than unity, concentric 
(toroidal) structure (see figure 1 (b)) can appear. That director configuration was 
identified by Drzaic [6]. For homeotropically aligned droplets there are also two 
different director configurations, the radial and the axial configuration (see figure 2). 
The radial configuration is spherically symmetric, whereas the axial one has cylindrical 
symmetry. As was found theoretically and in accordance with experiment, there is a 
critical droplet radius R,  = 18.2 K ,  JW, ,  below which the axial configuration is 
energetically preferred due to the scaling laws of wall and bulk energies [7]. The 
authors speak of a configuration transition controlled by the droplet size, which may be 
misleading because for a given droplet the size is fixed. Another similar configuration 
transition was found by Lavrentovich and Terentjev [8], which is in contrast driven by 
the ratio K, , /K33 ,  and could therefore be observed experimentally, using the 
divergence of K 3 ,  at the smectic transition temperature. 

(a) (b) 
Figure 1. (a) Bipolar and (b) toroidal director configuration of droplets with planar surface 

alignment. 

(4 (4 

alignment. 
Figure 2. (a) Radial and (b) axial director configuration of droplets with homeotropic surface 
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Computer simulations of nematic droplets 1191 

2.1.1. Basic equations 
2.1. Theory 

The orientation of (effectively) uniaxial molecules with their figure axis parallel to 
the unit vector u is characterized by the (second rank) alignment tensor 

a,, = (U,U,>. (1) 
The brackets ( ) indicate an average (to be evaluated with the one-particle 
distribution function), and the bar refers to the symmetric-traceless (irreducible) part of 
the tensor. I assume the following nonlinear relaxation equation for a [9]: 

The first term is a damping term; the second term describes the Frank elasticity in the 
one-coefficient approximation, i.e. K, ,  = K , ,  = K 3 3 .  The quantity a,,, is a generalized 
force represented by the derivatives of a (dimensionless) Landau-De Gennes potential, 
and FPy describes the influence of an external orienting field. The phenomenological 
coefficients to and t, are related to the Frank elastic constant according to 

K = 3a,65$ k,T; 

y ,  = 3a.?,tarn P kBT. 

Further details may be found in [l]. This equation allows a unified treatment of non- 
equilibrium phenomena in the isotropic and the nematic phases, including the 
pretransitional phenomena. To simplify equation (2), I will assume uniaxiality, i.e. 

~ 

a,, = a J$ n,n,. (4) 

This approximation is supported by a recently performed linear stability analysis of the 
Landau-De Gennes potential, which revealed that the uniaxial state is stable [lo]. 

2.1.2. Simple algorithm 
At constant temperature one can assume 

a = a,, = S J5, 

where S = (P,(n,u,)) is the Maier-Saupe order parameter. The assumption that the 
scalar order parameter is constant holds not strictly, but turned out to be a good 
approximation, for the following reason: the correlation length to in equation (2) is of 
molecular size (for example 5 A for MBBA, cJ equation (3 a)). As a consequence, the 
disclination size is of the same order of magnitude, which means that the decay of the 
scalar order parameter from its equilibrium value to zero inside the disclination core 
takes place within a distance of one molecular length. The physical meaning of this 
statement is obscure; moreover, it clearly leaves the range of validity of equation (2), 
which is based on a mezzo-scale theory (that is, one volume element is large enough to 
contain as many molecules as needed to yield reasonable expectation values.? Thus, 

t More reliable predictions of the decay of the scalar order parameter inside a disclination 
core have been obtained from molecular theories, for example Zannonis Monte-Carlo 
simulations, cf: [13]. 
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1192 A. Kilian 

equation ( 5 )  holds for any macroscopic length scale. The corresponding constraint can 
be imposed on equation (2)  by an exterior product, i.e. 

Note that a,, now has the form given by equations (4)  and (5); is the totally 
antisymmetric tensor of rank 3. Equation (6) is first discretized on a uniform mesh, and 
thereafter multiplied by n,. This results in the following numerical algorithm for a 
constant scalar order parameter: 

n~~ = ~[(n,n,+.pB,B,)n,] ,  (7) 
The parameter ;1 has to be calculated at every lattice point such that n,n, = 1; y1 is the 
rotational viscosity, 61 the mesh size, and K the Frank elastic constant. The maximum 
numerically-stable time step 6t  = y1612/(6K) was chosen. The field strength E deter- 
mines s= E , E , ~ ~ ~ E ~ / ( ~ K ) .  If not stated otherwise, algorithm (7) has been used 
throughout this paper. 

2.1.3. Enhanced algorithm 
If one wants to simulate the nematic-isotropic phase transition, the Landau- 

De Gennes potential can no longer be neglected. I have developed an extended 
numerical algorithm where the alignment is still uniaxial, but the scalar order 
parameter a is free. This leads to the expression of an 'alignment vector' N ,  =an,. Its 
dynamics is given by 

a 2 
3 

z, at N ,  - <$n,A(N,n,) + - (A( T )  - a + a2)N,  - a-  'FPvnv = 0. 

In order to get rid of the material parameters B and C occurring in the Landau- 
De Gennes potential, all quantities in this equation have been scaled in units 
of combinations of B and C,  the temperature-independent coefficients of the Landau- 
De Gennes potential. They should therefore be distinguished from the previously 
defined quantities by a suitable tag, which I sacrifice for brevity. The remaining 
parameter A( T )  controls the temperature. Setting it to zero corresponds to T = T*, 
which is sometimes called the pseudo-critical temperature (below T*, no metastable 
isotropic phase is possible); the clearing point is at A,=2 /9 ,  and above A +  = 1/4, the 
isotropic phase is stable, i.e. no metastable nematic phase is possible. 

Discretizing equation (8) leads to the following numerical algorithm for the 
alignment vector (the term F,, is omitted, because phase transitions in the presence of 
an external field have so far not been simulated): 

Again, 6x and 6 t  are the mesh size and the time step, respectively. 

2.1.4. Representation of the director jield 
Due to the huge amount of data, it is not possible to represent the entire simulated 

director field. A sample is taken, which is done by selecting the sites with the highest 
anisotropic energy. In this way, the presentation resembles those pictures usually seen 
under the polarization microscope, because the locations with high anisotropic energy 
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Computer simulations of nematic droplets 1193 

yield at the same time a high phase contrast for polarized light. It will be referred to as 
‘defect representation’. The defect representation shows only the vicinity of the 
disclinations and therefore enables the examination of the disclination type. 

2.1.5. Representation of the mean alignment 
As a piece of additional information, the mean alignment of the droplet is 

represented as a rectangular box located in the droplet centre which represents (n,n,). 
For small droplets (in the range of 400 pm or less) a similar averaging occurs by visible 
light passing through the droplets, so that this mean alignment, which is in general not 
uniaxial, provides information about the anisotropy of the effective dielectic permittiv- 
ity tensor. 

2.1.6. Boundary conditions 
For homeotropically aligned droplets, rigid anchoring was assumed. However, this 

is not suitable for planar anchoring on a sphere. Instead, a new type of boundary 
condition was modelled, which will be referred to as true planar anchoring. It means 
that the director (or the alignment vector, equivalently) can freely rotate within the 
local tangent plane of the droplet. 

2.1.7. Phase contrast pictures 
The phase contrast pictures depicted below have been calculated according to the 

Mueller matrix formalism [l 11. That is, the phase shift of monochromatic light passing 
through the droplet is calculated for every grid point (assuming the light passes in a 
prescribed direction), but diffraction is not taken into account. 

3. Simulations 
3.1. Homeotropically aligned droplets 

In this simulation, the simple algorithm for a fixed scalar order parameter was used. 
In order to achieve a solution which is not biased by any assumptions, I start from a 
quasi-isotropic state consisting of randomly distributed directors. The result was an 
axial director configuration (see figure 3 (a)), accompanied by the usual disclination 

Figure 3. Six stages of the orientation of an axial droplet by an external field. 
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1194 A. Kilian 

(4 (4 
Figure 4. Computed phase contrast pictures of (a) the axial and (b) the radial director 

configurations of droplets with homeotropic anchoring. 

loop which was quite small in this case. Accordingly, the overall orientation was fairly 
isotropic and thus did not differ much from a radial configuration. 

The axial configuration is energetically preferred to the radial one as a consequence 
of the rigid anchoring (corresponding to an infinite surface energy), which favours the 
axial configuration. To check the numerical algorithm in this respect, a radial droplet 
was modelled, and it turned out that its overall anisotropic energy was about 10 times 
higher than that of the axial one. The radial configuration was of course stable, but it 
could be transformed to an axial one by the application of an electric field. Figure 4 
shows computed phase contrast pictures of a radial and an axial director configuration. 
The main difference is, that the ‘Maltese cross’ is well defined in the centre for a radial 
droplet, whereas the axial droplet is black inside the disclination ring. 

Next, an external field of E -  5 Elred was applied to the previously obtained axial 
droplet, and A& assumed positive (there is no real Freedericks threshold for the radial 
geometry but rather is Efred a reference value for the dimensionless algorithm). Six 
stages of the reorientation process are displayed in figure 4 the disclination ring grows 
and rotates in the direction of the external field, and at the same time increases the weak 
anisotropy of the overall alignment represented by the rectangular box in the droplet 
centre. Once oriented in the direction of the external field, the droplet axis, which is 
defined by the disclination ring rather than by the insignificant equilibrium anisotropy, 
keeps its position when the field is switched off (not shown). 

3.2. Planar aligned droplets 
Here, the previously mentioned true planar boundary conditions were applied. 

Again, the simple algorithm for a fixed scalar order parameter, with quasi-isotropic 
initial conditions was used. The relaxation process is depicted in figure 5: first, a 
network of disclination lines which end at the surface is generated. This simplifies to 
two lines that shorten to half-loops which are located at antipodal points. In 
equilibrium, the overall alignment is well defined in the direction of the defects, and 
uniaxial. This configuration is very similar to the bipolar director configuration, with 
the only difference that the boojums are represented by short half-loops. This difference 
is fundamental from a topological point of view, because lines and points are different 
objects. In practice, however, there is not much difference: if the endpoints of the loop 
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Computer simulations of nematic droplets 1195 

Figure 5. Relaxation of a droplet with planar surface alignment from the quasi-isotropic state; 
t/6t =0,800,2000,3000,7000 and 31 000. 
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Figure 6. Two surface defects of strength 1/2 can continuously be transformed into one defect of 
strength 1. 

are close enough together the director field becomes indistinguishable from that of a 
boojum (see figure 6). Thus, the half-loops provide a microscopic model for the surface 
disclinations of strength 1, which arose without any further assumptions from the true 
planar boundary conditions. 

Next, a two-frequency control of the droplet being considered was simulated. The 
simulation worked in principle as it should, that is, the droplet axis could be rotated in 
direction of the applied field, and also perpendicular to the field. During the 
reorientation the biaxial director configuration was preserved. It should be mentioned 
that the reorientation was not a smooth process but happened in small steps, as if the 
director field were stuck to the boundary. This is reflected by the elastic energy of the 
droplet as a function of time, shown in figure 7. I believe these steps to be an artifact of 
the discretization; the interesting thing here, however, is that a similar behaviour is 
known from experiment with very small droplets [12]. 

3.2.1. InJIuence of the cavity anisotropy 
It is known from experiment [l] that the director axis of a bipolar droplet with 

elongated cavity has a home position which is parallel to the cavity axis. After a 
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1196 A. Kilian 

Figure 7. Elastic energy during reorientation of a bipolar droplet by an external field. 

(4 (b) 

Figure 8. Bipolar droplet with elongated cavity. After reorientation by an electric field (left) the 
droplet relaxes (right) to a state with a small cavity-induced overall-biaxiality. 

reorientation by an external field, it returns into this position. The simulation did not 
exhibit such behaviour, probably due to the previously mentioned 'sticking'. Instead, it 
showed a small cavity-induced biaxiality (see figure 8). 

3.3. Heating up planar aligned droplets 
For this simulation, the extended algorithm containing the Landau-De Gennes 

potential was used. In contrast to the simple algorithm, the length scaling is fixed. I 
chose a length scaling of 6x/&, = 10; the corresponding maximum numerically stable 
time step was 6t =q,. For material parameters like K = 1.3 x lo-" Nand y1 = 0 1 5  Pas  
(for example MBBA), this corresponds to a droplet diameter of about 0.6 pm and a time 
step of 6t = 17 ns (see equation (3)). 

Again, a quasi-isotropic initial state was chosen, and a temperature T = T* (the 
pseudo-critical temperature, below which no metastable isotropic phase can exist). It 
took the droplet 300 OOO time steps = 5 ms to relax to the bipolar configuration. 
Although the spatial resolution was lower than in the above simulation with the simple 
algorithm (the droplet diameter was reduced from 80 to 50 grid points), ten times more 
time steps were needed. Also, the amount of floating point operations needed to 
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Computer simulations of nematic droplets 1197 

Figure 9. Six stages of heating a bipolar droplet. It seems that the director configuration 
changes from half-loops to real boojums between the third and the fourth picture. 

Figure 10. (a) Computed phase contrast picture of a simulated bipolar droplet with half-loops 
and (b) photograph of a bipolar droplet. 

perform one time step was considerably higher. The computing time for this simulation 
was about 70 hours on a Hewlett-Packard 720 workstation in single user mode. The 
results of this simulation are comparable to those of the other one and are therefore not 
presented. Next, the droplet was heated above the clearing point as slowly as possible 
(with respect to the time consuming algorithm). In figure 9 six stages of the phase 
transition are displayed. Instead of naming the respective reduced temperatures, I 
found it more instructive to express the temperatures by their corresponding Landau- 
De Gennes potentials. The results are: the bipolar configuration is preserved, but the 
scalar order parameter decreases. So far, not surprising. Unexpected is the change in 
the director configuration from the half loops to real boojums, which takes place 
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1198 Computer simulations of nematic droplets 

between the third and the fourth picture, that is, close to the nematic-isotropic 
transition temperature. Unfortunately, it will be difficult to separate these two 
configurations in an experiment: a computed phase contrast picture of a bipolar 
configuration with half-loops looks very similar to a photograph of a real one (see 
figure 10). 

4. Conclusions 
The numerical method proved capable of simulating some of the director 

configurations of nematic droplets. The relaxation from the quasi-isotropic state 
ensures that the equilibrium configurations found are unbiased by any 
presuppositions. 

On the basis of the correct nematic symmetry and a new type of boundary 
condition, referred to as true planar anchoring, a ‘microscopic’ model of the s= 1 
surface disclination points (boojums), that is, disclination half-loops, arose without any 
additional assumptions. 

An enhancement of the algorithm including a variable scalar order parameter leads 
to the interesting prediction, that the disclination half-loops will transform to real 
boojums when the probe is heated beyond the clearing point. This prediction, however, 
can only be checked if short half loops can be distinguished from real boojums 
experimentally. 

The reorientation of bipolar configured droplets by cavity anisotropy failed, which 
may be a hint that, in this case, material transport is one of the relevant mechanisms. 

Financial support of the Deutsche Forchungsgemeinschaft via the Sonderfors- 
chungsbereich ‘Anisotrope Fluide’ is gratefully acknowledged. I thank Professor 
Dr S. Hess and Dr H. Kitzerow (TU Berlin) for their assistance. 
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